
CS 3330: Combinatorics
Midterm Review

Shuai Li
John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3330/index.html

1

https://shuaili8.github.io/
https://shuaili8.github.io/Teaching/CS3330/index.html

Exam code

• Exam on Nov 14, 10 AM-noon at Dong Shang Yuan 205 (lecture
classroom)
• Finish the exam paper by yourself
• Allowed:
• Calculator, watch (not smart)

• Not allowed:
• Books, materials, cheat sheet, …
• Phones, any smart device

• No entering after 10:30
• Early submission period: 10:50--11:50

2

Basics

3

Graphs

• Definition A graph 𝐺 is a pair (𝑉, 𝐸)
• 𝑉: set of vertices
• 𝐸: set of edges
• 𝑒 ∈ 𝐸 corresponds to a pair of endpoints 𝑥, 𝑦 ∈ 𝑉

4

x y

z w

We mainly focus on
Simple graph:
No loops, no multi-edges

Graphs: All about adjacency

• Same graph or not

• Two graphs 𝐺! = 𝑉!, 𝐸! , 𝐺! = 𝑉", 𝐸" are isomorphic if there is a
bijection 𝑓: 𝑉! → 𝑉" s.t.

𝑒 = 𝑎, 𝑏 ∈ 𝐸! ⟺ 𝑓 𝑒 := 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐸"
5

(a) (b) (c)

Example: Complete graphs

• There is an edge between every pair of vertices

6

Example: Regular graphs

• Every vertex has the same degree

7

Example: Bipartite graphs

• The vertex set can be partitioned into two sets 𝑋 and 𝑌 such that
every edge in 𝐺 has one end vertex in 𝑋 and the other in 𝑌
• Complete bipartite graphs

8

Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

9

Example: Peterson graph (cont.)

• Show that the following two graphs are same/isomorphic

10

Subgraphs

• A subgraph of a graph 𝐺 is a graph 𝐻 such that
𝑉 𝐻 ⊆ 𝑉 𝐺 , 𝐸 𝐻 ⊆ 𝐸 𝐺

and the ends of an edge 𝑒 ∈ 𝐸(𝐻) are the same as its ends in 𝐺
• 𝐻 is a spanning subgraph when 𝑉(𝐻) = 𝑉(𝐺)
• The subgraph of 𝐺 induced by a subset 𝑆 ⊆ 𝑉(𝐺) is the subgraph whose

vertex set is 𝑆 and whose edges are all the edges of 𝐺 with both ends in 𝑆

11

Paths (路径)

• A path is a non-empty alternating sequence 𝑣#𝑒!𝑣!𝑒"…𝑒$𝑣$
where vertices are all distinct
• Or it can be written as 𝑣!𝑣"…𝑣# in simple graphs

• 𝑃$: path of length 𝑘 (the number of edges)

12

Walk (游走)

• A walk is a non-empty alternating sequence 𝑣#𝑒!𝑣!𝑒"…𝑒$𝑣$
• The vertices not necessarily distinct
• The length = the number of edges

• Proposition (1.2.5, W) Every 𝑢-𝑣 walk contains a 𝑢-𝑣 path

13

Cycles (环)

• If 𝑃 = 𝑥#𝑥!…𝑥$%! is a path and 𝑘 ≥ 3, then the graph 𝐶 ≔ 𝑃 +
𝑥$%!𝑥# is called a cycle
• 𝐶$: cycle of length 𝑘 (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

14

Neighbors and degree

• Two vertices 𝑎 ≠ 𝑏 are called adjacent if they are joined by an edge
• 𝑁(𝑥): set of all vertices adjacent to 𝑥

• neighbors of 𝑥
• A vertex is isolated vertex if it has no neighbors

• The number of edges incident with a vertex 𝑥 is called the degree of 𝑥
• A loop contributes 2 to the degree

• A graph is finite when both 𝐸(𝐺) and 𝑉(𝐺) are finite sets

15

Handshaking Theorem (Euler 1736)

• Theorem A finite graph 𝐺 has an even number of vertices with odd
degree

16

x y

z w

Proof

• Theorem A finite graph 𝐺 has an even number of vertices with
odd degree.
• Proof The degree of 𝑥 is the number of times it appears

in the right column. Thus

@
'∈)(+)

deg(𝑥) = 2 𝐸(𝐺)

17

Degree

• Minimal degree of 𝐺: 𝛿 𝐺 = min 𝑑 𝑣 : 𝑣 ∈ 𝑉
• Maximal degree of 𝐺: ∆ 𝐺 = max 𝑑 𝑣 : 𝑣 ∈ 𝑉

• Average degree of 𝐺: 𝑑 𝐺 = !
)
∑-∈) 𝑑(𝑣) =

" .
)

• All measure the `density’ of a graph

• 𝑑(𝐺) ≥ 𝛿(𝐺)

18

Degree (global to local)

• Proposition (1.2.2, D) Every graph 𝐺 with at least one edge has a
subgraph 𝐻 with

𝛿 𝐻 >
1
2
𝑑(𝐻) ≥

1
2
𝑑(𝐺)

• Example: 𝐺 = 7, 𝑑 𝐺 = !/
0

• 𝛿 𝐻 = 2, 𝑑 𝐻 = !1
2

19

H

Minimal degree guarantees long paths and
cycles
• Proposition (1.3.1, D) Every graph 𝐺 contains a path of length 𝛿(𝐺)

and a cycle of length at least 𝛿 𝐺 + 1, provided 𝛿(𝐺) ≥ 2.

20

Distance and diameter

• The distance 𝑑+(𝑥, 𝑦) in 𝐺 of two vertices 𝑥, 𝑦 is the length of a
shortest 𝑥~𝑦 path
• if no such path exists, we set 𝑑 𝑥, 𝑦 ≔ ∞

• The greatest distance between any two vertices in 𝐺 is the diameter
of 𝐺

diam 𝐺 = max
',4∈)

𝑑(𝑥, 𝑦)

21

Example -- Erdős number

• A well-known graph
• vertices: mathematicians of the world
• Two vertices are adjacent if and only if they have

published a joint paper
• The distance in this graph from some mathematician to the

vertex Paul Erdős is known as his or her Erdős number

22

Radius and diameter

• A vertex is central in 𝐺 if its greatest distance from other vertex is
smallest, such greatest distance is the radius of 𝐺

rad G ≔ min
'∈)

max
4∈)

𝑑(𝑥, 𝑦)

• Proposition (1.4, H; Ex1.6, D) rad(𝐺) ≤ diam(𝐺) ≤ 2 rad(𝐺)

23

Radius and maximum degree control graph
size
• Proposition (1.3.3, D) A graph 𝐺 with radius at most 𝑟 and maximum

degree at most ∆≥ 3 has fewer than ∆
∆%"

(∆ − 1)6.

24

Lecture 2: Girth, Connectivity
and Bipartite Graphs

25

Girth

• The minimum length of a cycle in a graph 𝐺 is the girth 𝑔(𝐺) of 𝐺

• Example: The Peterson graph is the unique 5-cage
• cubic graph (every vertex has degree 3)
• girth = 5
• smallest graph satisfies the above properties

26

Girth (cont.)

• A tree has girth ∞
• Note that a tree can be colored with two different

colors
•⟹ A graph with large girth has small chromatic

number?
• Unfortunately NO!
• Theorem (Erdős, 1959) For all 𝑘, 𝑙, there exists a

graph 𝐺 with 𝑔 𝐺 > 𝑙 and 𝜒 𝐺 > 𝑘

27

Girth and diameter

• Proposition (1.3.2, D) Every graph 𝐺 containing a cycle satisfies
𝑔 𝐺 ≤ 2 diam 𝐺 + 1

• When the equality holds?

28

Girth and minimal degree lower bounds
graph size

• 𝑛# 𝛿, 𝑔 ≔ ^
1 + 𝛿 ∑78#6%!(𝛿 − 1)7 , if 𝑔 = 2𝑟 + 1 is odd
2∑78#6%!(𝛿 − 1)7 , if 𝑔 = 2𝑟 is even

• Exercise (Ex7, ch1, D) Let 𝐺 be a graph. If 𝛿(𝐺) ≥ 𝛿 ≥ 2 and 𝑔(𝐺) ≥
𝑔, then 𝐺 ≥ 𝑛# 𝛿, 𝑔
• Corollary (1.3.5, D) If 𝛿(𝐺) ≥ 3, then 𝑔 𝐺 < 2 log"|𝐺|

29

Triangle-free upper bounds # of edges

• Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an 𝑛-vertex triangle-free simple graph is 𝑛"/4

• The bound is best possible
• There is a triangle-free graph with 𝑛"/4 edges: 𝐾 9/" , 9/"

• Extremal problems

30

Connected, connected component

• A graph 𝐺 is connected if 𝐺 ≠ ∅ and any two of its vertices are linked
by a path
• A maximal connected subgraph of 𝐺 is a (connected) component

31

Quiz

• Problem (1B, L) Suppose 𝐺 is a graph on 10 vertices that is not
connected. Prove that 𝐺 has at most 36 edges. Can equality occur?
• More general (Ex9, S1.1.2, H) Let 𝐺 be a graph of order 𝑛 that is not

connected. What is the maximum size of 𝐺?

32

Connected vs. minimal degree

• Proposition (1.3.15, W) If 𝛿(𝐺) ≥ 9%!
"

, then 𝐺 is connected

• (Ex16, S1.1.2, H; 1.3.16, W)
If 𝛿(𝐺) ≥ 9%"

"
, then 𝐺 need not be connected

• Extremal problems
• “best possible” “sharp”

33

Add/delete an edge

• Components are pairwise disjoint; no two share a vertex
• Adding an edge decreases the number of components by 0 or 1
• ⇒ deleting an edge increases the number of components by 0 or 1

• Proposition (1.2.11, W)
Every graph with 𝑛 vertices and 𝑘 edges has at least 𝑛 − 𝑘
components
• An edge 𝑒 is called a bridge if the graph 𝐺 − 𝑒 has more components
• Proposition (1.2.14, W)

An edge 𝑒 is a bridge ⟺𝑒 lies on no cycle of 𝐺
• Or equivalently, an edge 𝑒 is not a bridge ⟺𝑒 lies on a cycle of 𝐺

34

Cut vertex and connectivity

• A node 𝑣 is a cut vertex if the graph 𝐺 − 𝑣 has more
components
• A proper subset S of vertices is a vertex cut set if the

graph 𝐺 − 𝑆 is disconnected, or trivial (a graph of
order 0 or 1)
• The connectivity, 𝜅(𝐺), is the minimum size of a cut

set of 𝐺
• The graph is 𝑘-connected for any 𝑘 ≤ 𝜅(𝐺)

35

Connectivity properties

• 𝜅 𝐾9 = 𝑛 − 1
• If 𝐺 is disconnected, 𝜅 𝐺 = 0
• ⇒ A graph is connected ⟺𝜅 𝐺 ≥ 1

• If 𝐺 is connected, non-complete graph of order 𝑛, then
1 ≤ 𝜅 𝐺 ≤ 𝑛 − 2

36

Connectivity properties (cont.)

• 𝜅 𝐺 ≥ 2⟺𝐺 is connected and has no cut vertices
• A vertex lies on a cycle ⇏ it is not a cut vertex
• ⇒ (Ex13, S1.1.2, H) Every vertex of a connected graph 𝐺 lies on at least one

cycle ⇏ 𝜅 𝐺 ≥ 2
• (Ex14, S1.1.2, H) 𝜅 𝐺 ≥ 2 implies 𝐺 has at least one cycle

• (Ex12, S1.1.2, H) 𝐺 has a cut vertex vs. 𝐺 has a bridge

37

Connectivity and minimal degree

• (Ex15, S1.1.2, H)
• 𝜅 𝐺 ≤ 𝛿(𝐺)
• If 𝛿 𝐺 ≥ 𝑛 − 2, then 𝜅 𝐺 = 𝛿(𝐺)

38

Edge-connectivity

• A proper subset 𝐹 ⊂ 𝐸 is edge cut set if the graph 𝐺 − 𝐹 is
disconnected
• The edge-connectivity 𝜆(𝐺) is the minimal size of edge cut set
• 𝜆 𝐺 = 0 if 𝐺 is disconnected
• Proposition (1.4.2, D) If 𝐺 is non-trivial, then 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)

39

Large average (minimal) degree implies local
large connectivity
• Theorem (1.4.3, D, Mader 1972) Every graph 𝐺 with 𝑑(𝐺) ≥ 4𝑘 has a

(𝑘 + 1)-connected subgraph 𝐻 such that 𝑑 𝐻 > 𝑑 𝐺 − 2𝑘.

40

Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936)
A graph is bipartite ⟺ it contains no odd cycle

41

Complete graph is a union of bipartite graphs

• The union of graphs 𝐺!, … , 𝐺$, written 𝐺! ∪⋯∪ 𝐺$, is the graph with
vertex set ⋃78!

$ 𝑉(𝐺7) and edge set ⋃78!
$ 𝐸(𝐺7)

• Consider an air traffic system with 𝑘 airlines
• Each pair of cities has direct service from at least one airline
• No airline can schedule a cycle through an odd number of cities
• Then, what is the maximum number of cities in the system?

• Theorem (1.2.23, W) The complete graph 𝐾9 can be expressed as the
union of 𝑘 bipartite graphs ⟺𝑛 ≤ 2$

42

Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph 𝐺 has a bipartite subgraph
with at least 𝐸 /2 edges

43

Lecture 3: Trees

44

Trees

• A tree is a connected graph 𝑇 with no cycles

45

Properties

• Recall that
• ⇒(Ex 3, S1.3.1, H) A tree of order 𝑛 ≥ 2 is a bipartite graph

• Recall that
• ⇒ Every edge in a tree is a bridge
• 𝑇 is a tree ⟺𝑇 is minimally connected, i.e. 𝑇 is connected but 𝑇 − 𝑒

is disconnected for every edge 𝑒 ∈ 𝑇

46

Equivalent definitions (Theorem 1.5.1, D)

• 𝑇 is a tree of order 𝑛
⇔ Any two vertices of 𝑇 are linked by a unique path in 𝑇
⇔ 𝑇 is minimally connected
• i.e. 𝑇 is connected but 𝑇 − 𝑒 is disconnected for every edge 𝑒 ∈ 𝑇

⇔𝑇 is maximally acyclic
• i.e. 𝑇 contains no cycle but 𝑇 + 𝑥𝑦 does for any non-adjacent vertices 𝑥, 𝑦 ∈
𝑇

⇔ (Theorem 1.10, 1.12, H) 𝑇 is connected with 𝑛 − 1 edges
⇔ (Theorem 1.13, H) 𝑇 is acyclic with 𝑛 − 1 edges

47

Leaves of tree

• A vertex of degree 1 in a tree is called a leaf
• Theorem (1.14, H; Ex9, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then
𝑇 has at least two leaves
• (Ex3, S1.3.2, H) Let 𝑇 be a tree with max degree ∆. Then 𝑇 has at least
∆ leaves
• (Ex10, S1.3.2, H) Let 𝑇 be a tree of order 𝑛 ≥ 2. Then the number of

leaves is
2 + @

-:<(-)=>

𝑑 𝑣 − 2

• (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
• Every leaf node is not a cut vertex

48

The center of a tree is a vertex or ‘an edge’

• Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices

49

Any tree can be embedded in a ‘dense’ graph

• Theorem (1.16, H) Let 𝑇 be a tree of order 𝑘 + 1 with 𝑘 edges. Let 𝐺
be a graph with 𝛿(𝐺) ≥ 𝑘. Then 𝐺 contains 𝑇 as a subgraph

50

Spanning tree

• Given a graph 𝐺 and a subgraph 𝑇, 𝑇 is a spanning tree of 𝐺 if 𝑇 is a
tree that contains every vertex of 𝐺
• Example: A telecommunications company tries to lay cable in a new

neighbourhood
• Proposition (2.1.5c, W) Every connected graph contains a spanning

tree

51

Minimal spanning tree - Kruskal’s Algorithm

• Given: A connected, weighted graph 𝐺
1. Find an edge of minimum weight and mark it.
2. Among all of the unmarked edges that do not form a cycle with any

of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of 𝐺, then stop. If
not, repeat step 2

52

Example

53

Theoretical guarantee of Kruskal’s algorithm

• Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight

54

Cayley’s tree formula

• Theorem (1.18, H; 2.2.3, W). There
are 𝑛9%" distinct labeled trees of
order 𝑛

55

Example

56

of trees with fixed degree sequence

• Corollary (2.2.4, W) Given positive integers 𝑑!, … , 𝑑9 summing to
2𝑛 − 2, there are exactly 9%" !

∏ <!%! !
trees with vertex set 𝑛 such that

vertex 𝑖 has degree 𝑑7 for each 𝑖

• Example (2.2.5, W) Consider trees with vertices 7 that have degrees
3,1,2,1,3,1,1

57

Matrix tree theorem - cofactor

• For an 𝑛×𝑛 matrix 𝐴, the 𝑖, 𝑗 cofactor of
𝐴 is defined to be

−1 7AB det 𝑀7B
where 𝑀7B represents the 𝑛 − 1 ×(
)

𝑛 −
1 matrix formed by deleting row 𝑖 and
column 𝑗 from 𝐴

58

Matrix tree theorem

• Theorem (1.19, H; 2.2.12, W; Kirchhoff) If 𝐺 is a connected labeled
graph with adjacency matrix 𝐴 and degree matrix 𝐷, then the number
of unique spanning trees of 𝐺 is equal to the value of any cofactor of
the matrix 𝐷 − 𝐴
• If the row sums and column sums of a matrix are all 0, then the

cofactors all have the same value
• Exercise Read the proof
• Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove

Cayley’s theorem

59

Example

• Exercise (Ex6, S1.3.4, H) Let 𝑒 be an edge of 𝐾9. Use Cayley’s Theorem
to prove that 𝐾9 − 𝑒 has (𝑛 − 2)𝑛9%> spanning trees

60

Wiener index

• In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum
• Wiener index 𝐷 𝐺 = ∑C,-∈)(+)𝑑+(𝑢, 𝑣)
• Theorem (2.1.14, W) Among trees with 𝑛 vertices, the Wiener index
𝐷(𝑇) is minimized by stars and maximized by paths, both uniquely
• Over all connected 𝑛-vertex graphs, 𝐷 𝐺 is minimized by 𝐾9 and

maximized (2.1.16, W) by paths
• (Lemma 2.1.15, W) If 𝐻 is a subgraph of 𝐺, then 𝑑$(𝑢, 𝑣) ≤ 𝑑%(𝑢, 𝑣)

61

Prefix coding

• A binary tree is a rooted plane tree where each vertex has at most
two children
• Given large computer files and limited storage, we want to encode

characters as binary lists to minimize (expected) total length
• Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011

62

Huffman’s Algorithm (2.3.13, W)

• Input: Weights (frequencies or probabilities) 𝑝!, … , 𝑝9
• Output: Prefix-free code (equivalently, a binary tree)
• Idea: Infrequent items should have longer codes; put infrequent items

deeper by combining them into parent nodes.
• Recursion: replace the two least likely items with probabilities 𝑝, 𝑝′

with a single item of weight 𝑝 + 𝑝′

63

Example (2.3.14, W)

64

a 5

b 1

c 1

d 7

e 8

f 2

g 3

h 6

a 5 100

b 1 00000

c 1 00001

d 7 01

e 8 11

f 2 0001

g 3 001

h 6 101
The average length is !×#$!$!$%×&$⋯

##
= #(

))
< 3

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution 𝑝7 on 𝑛 items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length

65

Huffman coding and entropy

• The entropy of a discrete probability distribution 𝑝7 is that

𝐻 𝑝 = −@
7

𝑝7 log" 𝑝7

• Exercise (Ex2.3.31, W) 𝐻(𝑝) ≤ average length of Huffman coding ≤
𝐻(𝑝) + 1
• Exercise (Ex2.3.30, W) When each 𝑝7 is a power of ½, average length

of Huffman coding is 𝐻(𝑝)

66

Lecture 4: Circuits

67

Eulerian circuit

• A closed walk through a graph using every edge once is called an
Eulerian circuit
• A graph that has such a walk is called an Eulerian graph

• Theorem (1.2.26, W) A graph 𝐺 is Eulerian ⟺ it has at most one
nontrivial component and its vertices all have even degree
• (possibly with multiple edges)
• Proof “⟹” That 𝐺 must be connected is obvious.

Since the path enters a vertex through some edge and
leaves by another edge, it is clear that all degrees must be even

68

Key lemma

• Lemma (1.2.25, W) If every vertex of a graph 𝐺 has degree at least 2,
then 𝐺 contains a cycle.

69

Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex 𝑟 and start with the trivial partial circuit (𝑟)
2. Given a partial circuit (𝑥#, 𝑒!, 𝑥!, … , 𝑥D%!, 𝑒D , 𝑥D = 𝑥#) that traverses not

all edges of 𝐺, remove these edges from 𝐺
3. Let 𝑖 be the least integer for which 𝑥7 is incident with one of the

remaining edges
4. Form a greedy partial circuit among the remaining edges of the form

(𝑥7 = 𝑦#, 𝑒!E , 𝑦!, … , 𝑦F%!, 𝑒FE , 𝑦F = 𝑥7)
5. Expand the original circuit by setting

(𝑥#, 𝑒!, … , 𝑒7 , 𝑥7 = 𝑦#, 𝑒!E , 𝑦!, … , 𝑦F%!, 𝑒FE , 𝑦F = 𝑥7 , 𝑒7A!, … , 𝑒D , 𝑥D = 𝑥#)
6. Repeat step 2-5

70

Example

1. Start with the trivial circuit (1)
2. Greedy algorithm yields the partial circuit

(1,2,4,3,1)
3. Remove these edges
4. The first vertex incident with remaining edges is 2
5. Greedy algorithms yields (2,5,8,2)
6. Expanding (1,2,5,8,2,4,3,1)
7. Remove these edges

71

Example (cont.)

6. Expanding (1,2,5,8,2,4,3,1)
7. Remove these edges
8. First vertex incident with remaining edges is 4
9. Greedy algorithm yields 4,6,7,4,9,6,10,4
10. Expanding 1,2,5,8,2,4,6,7,4,9,6,10,4,3,1
11. Remove these edges
12. First vertex incident with remaining edges is 7
13. Greedy algorithm yields 7,9,11,7
14. Expanding 1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1

72

Eulerian circuit

•

73

Other properties

• Proposition (1.2.27, W) Every even graph decomposes into cycles

• The necessary and sufficient condition for a directed Eulerian circuit is
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’

74

TONCAS

• TONCAS: The obvious necessary condition is also sufficient
•

• Proposition (1.3.28, W) The nonnegative integers 𝑑!, … , 𝑑9 are the
vertex degrees of some graph ⟺∑78!9 𝑑7 is even
• (Possibly with loops)
• Otherwise (2,0,0) is not realizable
•

75

Hamiltonian path/circuits

• A path 𝑃 is Hamiltonian if 𝑉 𝑃 = 𝑉(𝐺)
• Any graph contains a Hamiltonian path is called traceable

• A cycle 𝐶 is called Hamiltonian if it spans all vertices of 𝐺
• A graph is called Hamiltonian if it contains a Hamiltonian circuit

• In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of
the dodecahedron (正十二面体)

76

Degree parity is not a criterion

• Hamiltonian graphs
• all even degrees 𝐶"!
• all odd degrees 𝐾"!
• a mixture 𝐺"

• non-Hamiltonian graphs
• all even 𝐺)
• all odd 𝐾*,,
• mixed 𝑃-

77

Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete

78

P, NP, NPC, NP-hard

• P The general class of questions for which some
algorithm can provide an answer in polynomial
time
• NP (nondeterministic polynomial time) The class

of questions for which an answer can be verified in
polynomial time
• NP-Complete

1. c is in NP
2. Every problem in NP is reducible to c in polynomial

time
• NP-hard

• c is in NP
• Every problem in NP is reducible to c in polynomial time

79

Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let 𝐺 be a graph of order 𝑛 ≥ 3. If 𝛿(𝐺) ≥ 𝑛/2,
then 𝐺 is Hamiltonian

• The bound is tight
(Ex12b, S1.4.3, H) 𝐺 = 𝐾!,!#$ is not Hamiltonian
Exercise The condition when 𝐾!,% is Hamiltonian
• The condition is not necessary

• 𝐶! is Hamiltonian but with small minimum (and even maximum) degree

80

Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let 𝐺 be a graph of
order 𝑛 ≥ 3. If deg 𝑥 + deg(𝑦) ≥ 𝑛 for all pairs of nonadjacent
vertices 𝑥, 𝑦, then 𝐺 is Hamiltonian

81

Independence number & Hamiltonian

• A set of vertices in a graph is called independent if
they are pairwise nonadjacent
• The independence number of a graph 𝐺, denoted as
𝛼(𝐺), is the largest size of an independent set
• Example: 𝛼 𝐺! = 2, 𝛼 𝐺" = 3
• Theorem (1.24, H) Let 𝐺 be a connected graph of

order 𝑛 ≥ 3. If 𝜅(𝐺) ≥ 𝛼(𝐺), then 𝐺 is Hamiltonian

82

Independence number & Hamiltonian 2

• The result is tight: 𝜅(𝐺) ≥ 𝛼(𝐺)−1 is not enough
• 𝐾.,./": 𝜅 = r, 𝛼 = 𝑟 + 1
• Exercise (Ex4, S1.4.3, H) Peterson graph: 𝜅 = 3, 𝛼 = 4

83

Pattern-free & Hamiltonian

• 𝐺 is 𝐻-free if 𝐺 doesn’t contain a copy of 𝐻 as induced subgraph
• Theorem (1.25, H) If 𝐺 is 2-connected and 𝐾!,>, 𝑍! -free, then 𝐺 is

Hamiltonian

• The condition 2-connectivity is necessary
• (Ex2, S1.4.3, H) If 𝐺 is Hamiltonian, then 𝐺 is 2-connected

84

Lecture 5: Matchings

85

Motivating example

86

Definitions

• A matching is a set of independent edges, in which no pair of edges
shares a vertex
• The vertices incident to the edges of a matching 𝑀 are 𝑀-saturated

(饱和的); the others are 𝑀-unsaturated
• A perfect matching in a graph is a matching that saturates every

vertex
• Example (3.1.2, W) The number of perfect matchings in 𝐾9,9 is 𝑛!
• Example (3.1.3, W) The number of perfect matchings in 𝐾"9 is

𝑓9 = 2𝑛 − 1 2𝑛 − 3 ⋯1 = 2𝑛 − 1 ‼

87

Maximal/maximum matchings 极大/最大

• A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge
• A maximum matching is a matching of maximum size among all

matchings in the graph
• Example: 𝑃>, 𝑃2

• Every maximum matching is maximal, but not every maximal
matching is a maximum matching

88

Symmetric difference of matchings

• The symmetric difference of 𝑀,𝑀′ is 𝑀∆𝑀E = (𝑀 −𝑀′) ∪ (𝑀E −𝑀)
• Lemma (3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle

89

Maximum matching and augmenting path

• Given a matching 𝑀, an 𝑀-alternating path is a path
that alternates between edges in 𝑀 and edges not in
𝑀
• An 𝑀-alternating path whose endpoints are 𝑀-

unsaturated is an 𝑀-augmenting path
• Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching
𝑀 in a graph 𝐺 is a maximum matching in 𝐺 ⇔ 𝐺 has
no 𝑀-augmenting path

90

Hall’s theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let 𝐺 be a bipartite
graph with partition 𝑋, 𝑌.
𝐺 contains a matching of 𝑋⇔ 𝑁(𝑆) ≥ 𝑆 for all 𝑆 ⊆ 𝑋

• Exercise. Read the other two proofs in Diestel.
• Corollary (3.1.13, W; 2.1.3, D) Every 𝑘-regular (𝑘 > 0) bipartite graph

has a perfect matching

91

General regular graph

• Corollary (2.1.5, D) Every regular graph of positive even degree has a
2-factor
• A 𝑘-regular spanning subgraph is called a 𝑘-factor
• A perfect matching is a 1-factor

92

• Given some family of sets 𝑋, a system of
distinct representatives for the sets in 𝑋
is a ‘representative’ collection of distinct
elements from the sets of 𝑋

• Theorem(1.52, H) Let 𝑆!, 𝑆", … , 𝑆$ be a collection of finite, nonempty
sets. This collection has SDR ⇔ for every 𝑡 ∈ [𝑘], the union of any 𝑡 of
these sets contains at least 𝑡 elements

Application to SDR

93

König Theorem
Augmenting Path Algorithm

94

Vertex cover

• A set 𝑈 ⊆ 𝑉 is a (vertex) cover of 𝐸 if every edge in 𝐺 is incident with
a vertex in 𝑈
• Example:
• Art museum is a graph with hallways are edges and corners are nodes
• A security camera at the corner will guard the paintings on the hallways
• The minimum set to place the cameras?

95

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931)
Let 𝐺 be a bipartite graph. The maximum size of a matching in 𝐺 is
equal to the minimum size of a vertex cover of its edges

96

Augmenting path algorithm (3.2.1, W)

• Input: 𝐺 is Bipartite with 𝑋, 𝑌, a matching 𝑀 in 𝐺
𝑈 = 𝑀−unsaturated verOces in 𝑋

• Idea: Explore 𝑀-alternating paths from 𝑈
letting 𝑆 ⊆ 𝑋 and 𝑇 ⊆ 𝑌 be the sets of vertices reached
• Initialization: 𝑆 = 𝑈, 𝑇 = ∅ and all vertices in 𝑆 are unmarked
• Iteration:

• If S has no unmarked vertex, stop and report 𝑇 ∪ (𝑋 − 𝑆) as a minimum cover and 𝑀
as a maximum matching

• Otherwise, select an unmarked 𝑥 ∈ 𝑆 to explore
• Consider each 𝑦 ∈ 𝑁(𝑥) such that 𝑥𝑦 ∉ 𝑀

• If 𝑦 is unsaturated, terminate and report an 𝑀-augmenting path from 𝑈 to 𝑦
• Otherwise, 𝑦𝑤 ∈ 𝑀 for some 𝑤

• include 𝑦 in 𝑇 (reached from 𝑥) and include 𝑤 in 𝑆 (reached from 𝑦)
• After exploring all such edges incident to 𝑥, mark 𝑥 and iterate.

97

Example

98

Red: A random matching

Theoretical guarantee for Augmenting path
algorithm
• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path

Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size

99

Weighted Bipartite Matching
Hungarian Algorithm

100

Weighted bipartite matching

• The maximum weighted matching problem is to seek a perfect matching 𝑀
to maximize the total weight 𝑤(𝑀)
• Bipartite graph

• W.l.o.g. Assume the graph is 𝐾!,! with 𝑤#,$ ≥ 0 for all 𝑖, 𝑗 ∈ 𝑛
• Optimization:

max 𝑤(𝑀%)=8
#,$

𝑎#,$𝑤#,$

𝑠. 𝑡. 𝑎#,&+⋯+ 𝑎#,! = 1 for any 𝑖
𝑎&,$ +⋯+ 𝑎!,$ = 1 for any 𝑗
𝑎#,$ ∈ 0,1

• Integer programming
• General IP problems are NP-Complete

101

(Weighted) cover

• A (weighted) cover is a choice of labels 𝑢!, … , 𝑢9 and 𝑣!, … , 𝑣9 such
that 𝑢7 + 𝑣B ≥ 𝑤7,B for all 𝑖, 𝑗
• The cost 𝑐(𝑢, 𝑣) of a cover (𝑢, 𝑣) is ∑0 𝑢0 + ∑1 𝑣1
• The minimum weighted cover problem is that of finding a cover of minimum

cost

• Optimization problem

min 𝑐 𝑢, 𝑣 =@
7

𝑢7 +@
B

𝑣B

𝑠. 𝑡. 𝑢7 + 𝑣B ≥ 𝑤7,B for any 𝑖, 𝑗

102

Duality

• Weak duality theorem
• For each feasible solution 𝑎 and 𝑢, 𝑣

M
0,1

𝑎0,1𝑤0,1 ≤M
0

𝑢0 +M
1

𝑣1

thus max∑0,1 𝑎0,1𝑤0,1 ≤ min∑0 𝑢0 + ∑1 𝑣1

103

(IP)

max 5
*,,

𝑎*,,𝑤*,,

𝑠. 𝑡. 𝑎*,) +⋯+ 𝑎*,- = 1 for any 𝑖
𝑎),, +⋯+ 𝑎-,, = 1 for any 𝑗
𝑎*,, ∈ 0,1

(Linear programming)

max 5
*,,

𝑎*,,𝑤*,,

𝑠. 𝑡. 𝑎*,) +⋯+ 𝑎*,- = 1 for any 𝑖
𝑎),, +⋯+ 𝑎-,, = 1 for any 𝑗
𝑎*,, ≥ 0

(Dual)

min 5
*

𝑢* +5
,

𝑣,

𝑠. 𝑡. 𝑢* + 𝑣, ≥ 𝑤*,, for any 𝑖, 𝑗

Duality (cont.)

• Strong duality theorem
• If one of the two problems has an optimal solution, so does the other one and

that the bounds given by the weak duality theorem are tight

maxM
0,1

𝑎0,1𝑤0,1 = minM
0

𝑢0 +M
1

𝑣1

• Lemma (3.2.7, W) For a perfect matching 𝑀 and cover (𝑢, 𝑣) in a
weighted bipartite graph 𝐺, 𝑐 𝑢, 𝑣 ≥ 𝑤 𝑀 .
𝑐(𝑢, 𝑣) = 𝑤(𝑀)⇔ 𝑀 consists of edges 𝑥7𝑦B such that 𝑢7 + 𝑣B = 𝑤7,B
In this case, 𝑀 and (𝑢, 𝑣) are optimal.

104

Equality subgraph

• The equality subgraph 𝐺C,- for a cover (𝑢, 𝑣) is the spanning subgraph
of 𝐾9,9 having the edges 𝑥7𝑦B such that 𝑢7 + 𝑣B = 𝑤7,B
• So if 𝑐(𝑢, 𝑣) = 𝑤(𝑀) for some perfect matching 𝑀, then 𝑀 is composed of

edges in 𝐺K,L
• And if 𝐺K,L contains a perfect matching 𝑀, then (𝑢, 𝑣) and 𝑀 (whose weights

are 𝑢0 + 𝑣1) are both optimal

105

Hungarian algorithm

• Input: Weighted 𝐾9,9 = 𝐵(𝑋, 𝑌)
• Idea: Iteratively adjusting the cover (𝑢, 𝑣) until the equality subgraph
𝐺C,- has a perfect matching
• Initialization: Let (𝑢, 𝑣) be a cover, such as 𝑢7 = max

B
𝑤7,B, 𝑣B = 0

106

(Dual)

min 5
*

𝑢* +5
,

𝑣,

𝑠. 𝑡. 𝑢* + 𝑣, ≥ 𝑤*,, for any 𝑖, 𝑗

Hungarian algorithm (cont.)

• Iteration: Find a maximum matching 𝑀 in 𝐺C,-
• If 𝑀 is a perfect matching, stop and report 𝑀 as a maximum weight matching
• Otherwise, let 𝑄 be a vertex cover of size 𝑀 in 𝐺K,L

• Let 𝑅 = 𝑋 ∩ 𝑄, 𝑇 = 𝑌 ∩ 𝑄
𝜖 = min 𝑢! + 𝑣" − 𝑤!,": 𝑥! ∈ 𝑋 − 𝑅, 𝑦" ∈ 𝑌 − 𝑇

• Decrease 𝑢! by 𝜖 for 𝑥! ∈ 𝑋 − 𝑅 and increase 𝑣" by 𝜖 for 𝑦" ∈ 𝑇
• Form the new equality subgraph and repeat

107

Example

108

Example 2: Excess matrix

109

Optimal value is the same
But the solution is not unique

Theoretical guarantee for Hungarian
algorithm
• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum

weight matching and a minimum cost cover

110

Example 3

111

Back to (unweighted) bipartite graph

• The weights are binary 0,1
• Hungarian algorithm always maintain integer labels in the weighted

cover, thus the solution will always be 0,1
• The vertices receiving label 1 must cover the weight on the edges,

thus cover all edges
• So the solution is a minimum vertex cover

112

