

CS 3330: Combina Midterm Revi

Shuai Li

John Hopcroft Center, Shanghai Jiao Tor

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS3330/in

Exam code

- Exam on Nov 14, 10 AM-noon at Dong Shang Yuan 205 (lecture classroom)
- Finish the exam paper by yourself
- Allowed:
	- Calculator, watch (not smart)
- Not allowed:
	- Books, materials, cheat sheet, …
	- Phones, any smart device
- No entering after 10:30
- Early submission period: 10:50--11:50

Basics

Graphs

- Definition A graph G is a pair (V, E)
	- \bullet V: set of vertices
	- E : set of edges
	- $e \in E$ corresponds to a pair of endpoints $x, y \in V$

Figure 1.1

Graphs: All about adjacency

• Two graphs $G_1 = (V_1, E_1), G_1 = (V_2, E_2)$ are isomorphic if there is a bijection $f: V_1 \rightarrow V_2$ s.t. $e = \{a, b\} \in E_1 \Leftrightarrow f(e) := \{f(a), f(b)\} \in E_2$

Example: Complete graphs

• There is an edge between every pair of vertices

Example: Regular graphs

• Every vertex has the same degree

Example: Bipartite graphs

- The vertex set can be partitioned into two sets X and Y such that every edge in G has one end vertex in X and the other in Y
- Complete bipartite graphs

Example (1A, L): Peterson graph

• Show that the following two graphs are same/isomorphic

Figure 1.4

Example: Peterson graph (cont.)

• Show that the following two graphs are same/isomorphic

Subgraphs

- A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and the ends of an edge $e \in E(H)$ are the same as its ends in G
	- H is a spanning subgraph when $V(H) = V(G)$
	- The subgraph of G induced by a subset $S \subseteq V(G)$ is the subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S

Induced Subgraph

Paths (路径)

- A path is a non-empty alternating sequence $v_0 e_1 v_1 e_2 ... e_k v_k$ where vertices are all distinct
	- Or it can be written as $v_0v_1 \dots v_k$ in simple graphs
- P^k : path of length k (the number of edges)

Walk (游走)

- A walk is a non-empty alternating sequence $v_0 e_1 v_1 e_2 ... e_k v_k$
	- The vertices not necessarily distinct
	- The length = the number of edges
- Proposition (1.2.5, W) Every u - v walk contains a u - v path

Cycles $(\pm \wedge)$

- If $P = x_0 x_1 ... x_{k-1}$ is a path and $k \ge 3$, then the graph $C \coloneqq P +$ $x_{k-1}x_0$ is called a cycle
- C^k : cycle of length k (the number of edges/vertices)

• Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Neighbors and degree

- Two vertices $a \neq b$ are called adjacent if they are joined by an edge
	- $N(x)$: set of all vertices adjacent to x
		- neighbors of x
	- A vertex is isolated vertex if it has no neighbors
- The number of edges incident with a vertex x is called the degree of x
	- A loop contributes 2 to the degree

• A graph is finite when both $E(G)$ and $V(G)$ are finite sets

graph with loop

Handshaking Theorem (Euler 1736)

• Theorem A finite graph G has an even number of vertices with odd degree

Proof

- Theorem A finite graph G has an even number of vertices with odd degree.
- Proof The degree of x is the number of times it appears in the right column. Thus

$$
\sum_{x \in V(G)} \deg(x) = 2|E(G)|
$$

Figure 1.1

Degree

- Minimal degree of $G: \delta(G) = \min\{d(v): v \in V\}$
- Maximal degree of $G: \Delta(G) = \max\{d(v): v \in V\}$

• Average degree of
$$
G
$$
: $d(G) = \frac{1}{|V|} \sum_{v \in V} d(v) = \frac{2|E|}{|V|}$

- All measure the 'density' of a graph
- $\bullet d(G) \geq \delta(G)$

Degree (global to local)

• Proposition (1.2.2, D) Every graph G with at least one edge has a subgraph H with

$$
\delta(H) > \frac{1}{2}d(H) \ge \frac{1}{2}d(G)
$$

• Example: $|G| = 7$, $d(G) =$ 16 7

$$
\bullet \delta(H)=2, d(H)=\frac{14}{5}
$$

Minimal degree guarantees long paths and cycles

• Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \geq 2$.

Distance and diameter

- The distance $d_G(x, y)$ in G of two vertices x, y is the length of a shortest $x \sim y$ path
	- if no such path exists, we set $d(x, y) \coloneqq \infty$
- The greatest distance between any two vertices in G is the diameter of G

$$
diam(G) = \max_{x,y \in V} d(x,y)
$$

Example -- Erdős number

- A well-known graph
	- vertices: mathematicians of the world
	- Two vertices are adjacent if and only if they have published a joint paper
	- The distance in this graph from some mathematician to the vertex Paul Erdős is known as his or her Erdős number

Radius and diameter

- A vertex is central in G if its greatest distance from other vertex is smallest, such greatest distance is the radius of G $rad(G) \coloneqq \min$ $x \in V$ max $y \in V$ $d(x, y)$
- Proposition (1.4, H; Ex1.6, D) rad(G) \leq diam(G) \leq 2 rad(G)

Radius and maximum degree control graph size

• Proposition (1.3.3, D) A graph G with radius at most r and maximum degree at most $\Delta \geq 3$ has fewer than $\frac{\Delta}{\Delta-2}(\Delta-1)^r$.

Lecture 2: Girth, Connectivity and Bipartite Graphs

- The minimum length of a cycle in a graph G is the girth $g(G)$ of G
- Example: The Peterson graph is the unique 5-cage
	- cubic graph (every vertex has degree 3)
	- girth $= 5$
	- smallest graph satisfies the above properties

Girth (cont.)

- A tree has girth ∞
- Note that a tree can be colored with two different colors
- $\bullet \Longrightarrow A$ graph with large girth has small chromatic number?
- Unfortunately NO!
- Theorem (Erdős, 1959) For all k , l , there exists a graph G with $g(G) > l$ and $\chi(G) > k$

Girth and diameter

- Proposition (1.3.2, D) Every graph G containing a cycle satisfies $g(G) \leq 2 \text{ diam}(G) + 1$
- When the equality holds?

Girth and minimal degree lower bounds graph size

•
$$
n_0(\delta, g) :=\begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i, & \text{if } g = 2r \text{ is even} \end{cases}
$$

- Exercise (Ex7, ch1, D) Let G be a graph. If $\delta(G) \geq \delta \geq 2$ and $g(G) \geq$ g, then $|G| \geq n_0(\delta, g)$
- Corollary (1.3.5, D) If $\delta(G) \geq 3$, then $q(G) < 2 \log_2 |G|$

Triangle-free upper bounds # of edges

- Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in an *n*-vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$
- The bound is best possible
- There is a triangle-free graph with $\lfloor n^2/4 \rfloor$ edges: $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$
- Extremal problems

Connected, connected component

- A graph G is connected if $G \neq \emptyset$ and any two of its vertices are linked by a path
- A maximal connected subgraph of G is a (connected) component

Quiz

- Problem (1B, L) Suppose G is a graph on 10 vertices that is not connected. Prove that G has at most 36 edges. Can equality occur?
- More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not connected. What is the maximum size of G ?

Connected vs. minimal degree

- Proposition (1.3.15, W) If $\delta(G) \geq \frac{n-1}{2}$ $\frac{1}{2}$, then G is connected
- (Ex16, S1.1.2, H; 1.3.16, W) If $\delta(G) \geq \frac{n-2}{2}$ $\frac{-2}{2}$, then G need not be connected
- Extremal problems
- "best possible" "sharp"

Add/delete an edge

- Components are pairwise disjoint; no two share a vertex
- Adding an edge decreases the number of components by 0 or 1
	- \Rightarrow deleting an edge increases the number of components by 0 or 1
- Proposition (1.2.11, W) Every graph with *n* vertices and *k* edges has at least $n - k$ components
- An edge e is called a bridge if the graph $G e$ has more components
- Proposition (1.2.14, W) An edge e is a bridge \Leftrightarrow e lies on no cycle of G
	- Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G

Cut vertex and connectivity

- A node v is a cut vertex if the graph $G v$ has more components
- A proper subset S of vertices is a vertex cut set if the graph $G - S$ is disconnected, or trivial (a graph of order 0 or 1)
- The connectivity, $\kappa(G)$, is the minimum size of a cut set of G
	- The graph is k-connected for any $k \leq \kappa(G)$

Connectivity properties

- $\kappa(K^n) = n 1$
- If G is disconnected, $\kappa(G) = 0$
	- \Rightarrow A graph is connected \Leftrightarrow $\kappa(G) \geq 1$
- If G is connected, non-complete graph of order n , then $1 \leq \kappa(G) \leq n-2$
Connectivity properties (cont.)

Proposition (1.2.14, W)

An edge e is a bridge \Leftrightarrow e lies on no cycle of G

- Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G
- $\kappa(G) \geq 2 \Leftrightarrow G$ is connected and has no cut vertices

- A vertex lies on a cycle \Rightarrow it is not a cut vertex
	- \Rightarrow (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one $cycle \nArr \kappa(G) \geq 2$
	- (Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle
- (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge

Connectivity and minimal degree

- (Ex15, S1.1.2, H)
- $\kappa(G) \leq \delta(G)$
- If $\delta(G) \geq n-2$, then $\kappa(G) = \delta(G)$

Edge-connectivity

- A proper subset $F \subset E$ is edge cut set if the graph $G F$ is disconnected
- The edge-connectivity $\lambda(G)$ is the minimal size of edge cut set
- $\lambda(G) = 0$ if G is disconnected
- Proposition (1.4.2, D) If G is non-trivial, then $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Large average (minimal) degree implies local large connectivity

• Theorem (1.4.3, D, Mader 1972) Every graph G with $d(G) \geq 4k$ has a $(k + 1)$ -connected subgraph H such that $d(H) > d(G) - 2k$.

Bipartite graphs

• Theorem (1.2.18, W, Kőnig 1936) A graph is bipartite \Leftrightarrow it contains no odd cycle

Proposition (1.2.15, W) Every closed odd walk contains an odd cycle

Complete graph is a union of bipartite graphs

- The union of graphs $G_1, ..., G_k$, written $G_1 \cup \cdots \cup G_k$, is the graph with vertex set $\bigcup_{i=1}^k V(G_i)$ and edge set $\bigcup_{i=1}^k E(G_i)$
- Consider an air traffic system with k airlines
	- Each pair of cities has direct service from at least one airline
	- No airline can schedule a cycle through an odd number of cities
	- Then, what is the maximum number of cities in the system?

• Theorem (1.2.23, W) The complete graph K_n can be expressed as the union of k bipartite graphs $\Leftrightarrow n \leq \mathbb{Z}^k$

Bipartite subgraph is large

• Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph with at least $|E|/2$ edges

Lecture 3: Trees

Trees

 \bullet A tree is a connected graph T with no cycles

Properties

- Recall that $\begin{array}{c} \hline \text{Theorem (1.2.18, W, Kőnig 1936)} \\ A \text{ graph is bipartite} \Leftrightarrow \hline \text{it contains no odd cycle} \end{array}$
- \Rightarrow (Ex 3, S1.3.1, H) A tree of order $n \geq 2$ is a bipartite graph

Proposition (1.2.14, W)

- Recall that $\begin{array}{c}$ An edge e is a bridge \Leftrightarrow e lies on no cycle of G • Or equivalently, an edge e is not a bridge \Leftrightarrow e lies on a cycle of G
- $\bullet \Rightarrow$ Every edge in a tree is a bridge
- T is a tree $\Leftrightarrow T$ is minimally connected, i.e. T is connected but $T e$ is disconnected for every edge $e \in T$

Equivalent definitions (Theorem 1.5.1, D)

- T is a tree of order n
	- \Leftrightarrow Any two vertices of T are linked by a unique path in T
	- \Leftrightarrow T is minimally connected
		- i.e. T is connected but $T e$ is disconnected for every edge $e \in T$
	- \Leftrightarrow T is maximally acyclic
		- i.e. T contains no cycle but $T + xy$ does for any non-adjacent vertices $x, y \in$ T
	- \Leftrightarrow (Theorem 1.10, 1.12, H) T is connected with $n-1$ edges
	- \Leftrightarrow (Theorem 1.13, H) T is acyclic with $n-1$ edges

Leaves of tree

- A vertex of degree 1 in a tree is called a leaf
- Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then T has at least two leaves
- (Ex3, S1.3.2, H) Let T be a tree with max degree Δ . Then T has at least ∆ leaves
- (Ex10, S1.3.2, H) Let T be a tree of order $n \geq 2$. Then the number of leaves is

$$
2+\sum_{v:d(v)\geq 3} (d(v)-2)
$$

- (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex
- Every leaf node is not a cut vertex

The center of a tree is a vertex or 'an edge'

• Theorem (1.15, H) In any tree, the center is either a single vertex or a pair of adjacent vertices

Any tree can be embedded in a 'dense' graph

• Theorem (1.16, H) Let T be a tree of order $k + 1$ with k edges. Let G be a graph with $\delta(G) \geq k$. Then G contains T as a subgraph

Spanning tree

- Given a graph G and a subgraph T, T is a spanning tree of G if T is a tree that contains every vertex of G
- Example: A telecommunications company tries to lay cable in a new neighbourhood
- Proposition (2.1.5c, W) Every connected graph contains a spanning tree

Minimal spanning tree - Kruskal's Algorithm

- Given: A connected, weighted graph G
- 1. Find an edge of minimum weight and mark it.
- 2. Among all of the unmarked edges that do not form a cycle with any of the marked edges, choose an edge of minimum weight and mark it
- 3. If the set of marked edges forms a spanning tree of G , then stop. If not, repeat step 2

Example

FIGURE 1.43. The stages of Kruskal's algorithm.

Theoretical guarantee of Kruskal's algorithm

• Theorem (1.17, H) Kruskal's algorithm produces a spanning tree of minimum total weight

Cayley's tree formula

- Theorem (1.18, H; 2.2.3, W). There are n^{n-2} distinct labeled trees of order n
	- m m m **63 63** \mathcal{E} $53₅₃$

FIGURE 1.46. Labeled trees on four vertices.

Example

56

 V_2

 \bullet _{V3}

 $\bullet v_2$

 ρ_{v_3}

 v_4

 v_A

 v_4

 $\bullet v_2$

 v_4

 v_A

 v_A

 V_2

 $\bullet v_2$

 ρ_{v_3}

of trees with fixed degree sequence

- Corollary (2.2.4, W) Given positive integers $d_1, ..., d_n$ summing to $2n-2$, there are exactly $\frac{(n-2)!}{\prod (n-2)!}$ $\prod (d_i - 1)!$ trees with vertex set $[n]$ such that vertex *i* has degree d_i for each *i*
- Example (2.2.5, W) Consider trees with vertices [7] that have degrees $(3,1,2,1,3,1,1)$

Matrix tree theorem - cofactor

• For an $n\times n$ matrix A, the i, j cofactor of \overline{A} is defined to be

 $(-1)^{i+j}$ det (M_{ij}) where M_{ij} represents the $\tilde{(n-1)\times (n-1)}$ $1)$ matrix formed by deleting row i and column j from A

 3×3 generic matrix [edit] Consider a 3x3 matrix $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}.$ Its cofactor matrix is $\mathbf{C} = \begin{pmatrix} +\left|\begin{matrix} a_{22} & a_{23} \ a_{32} & a_{33} \end{matrix}\right| & -\left|\begin{matrix} a_{21} & a_{23} \ a_{31} & a_{33} \end{matrix}\right| & +\left|\begin{matrix} a_{21} & a_{22} \ a_{31} & a_{32} \end{matrix}\right| \ -\left|\begin{matrix} a_{12} & a_{13} \ a_{32} & a_{33} \end{matrix}\right| & +\left|\begin{matrix} a_{11} & a_{13} \ a_{31} & a_{33} \end{matrix}\right| & -\left|\begin{matrix} a_{11$

Matrix tree theorem

- Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled graph with adjacency matrix A and degree matrix D , then the number of unique spanning trees of G is equal to the value of any cofactor of the matrix $D - A$
- If the row sums and column sums of a matrix are all 0, then the cofactors all have the same value
- Exercise Read the proof
- Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove Cayley's theorem

FIGURE 1.49. A labeled graph and its spanning trees.

Score one for Kirchhoff!

• Exercise (Ex6, S1.3.4, H) Let e be an edge of K_n . Use Cayley's Theorem to prove that $K_n - e$ has $(n - 2)n^{n-3}$ spanning trees

Wiener index

• In a communication network, large diameter may be acceptable if most pairs can communicate via short paths. This leads us to study the average distance instead of the maximum

• Wiener index
$$
D(G) = \sum_{u,v \in V(G)} d_G(u,v)
$$

- Theorem (2.1.14, W) Among trees with n vertices, the Wiener index $D(T)$ is minimized by stars and maximized by paths, both uniquely
- Over all connected *n*-vertex graphs, $D(G)$ is minimized by K_n and maximized (2.1.16, W) by paths
	- (Lemma 2.1.15, W) If H is a subgraph of G, then $d_G(u, v) \leq d_H(u, v)$

Prefix coding

- A binary tree is a rooted plane tree where each vertex has at most two children
- Given large computer files and limited storage, we want to encode characters as binary lists to minimize (expected) total length
- Prefix-free coding: no code word is an initial portion of another

• Example: 11001111011

Huffman's Algorithm (2.3.13, W)

- Input: Weights (frequencies or probabilities) $p_1, ..., p_n$
- Output: Prefix-free code (equivalently, a binary tree)
- Idea: Infrequent items should have longer codes; put infrequent items deeper by combining them into parent nodes.
- Recursion: replace the two least likely items with probabilities p, p' with a single item of weight $p + p'$

Example (2.3.14, W)

The average length is
$$
\frac{5 \times 3 + 5 + 5 + 7 \times 2 + \dots}{33} = \frac{30}{11} < 3
$$

Huffman coding is optimal

• Theorem (2.3.15, W) Given a probability distribution $\{p_i\}$ on n items, Huffman's Algorithm produces the prefix-free code with minimum expected length

Huffman coding and entropy

• The entropy of a discrete probability distribution $\{p_i\}$ is that

$$
H(p) = -\sum_{i} p_i \log_2 p_i
$$

- Exercise (Ex2.3.31, W) $H(p) \leq$ average length of Huffman coding \leq $H(p) + 1$
- Exercise (Ex2.3.30, W) When each p_i is a power of $\frac{1}{2}$, average length of Huffman coding is $H(p)$ Codewords

 Ω

average length = $(1) (\frac{1}{2}) + (2) (\frac{1}{4}) + (3) (\frac{1}{8}) + (3) (\frac{1}{8})$ $= 1.75 \; \mathrm{bits/symbol}$ $H = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 + \frac{1}{8}\log_2 8 + \frac{1}{8}\log_2 8$ $=\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{3}{8}$ 66

Lecture 4: Circuits

Eulerian circuit

- A closed walk through a graph using every edge once is called an Eulerian circuit
- A graph that has such a walk is called an Eulerian graph
- Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree
- (possibly with multiple edges)
- Proof " \Rightarrow " That G must be connected is obvious. Since the path enters a vertex through some edge and leaves by another edge, it is clear that all degrees must be even

Key lemma

• Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2, then G contains a cycle.

Proposition (1.3.1, D) Every graph G contains a path of length $\delta(G)$ and a cycle of length at least $\delta(G) + 1$, provided $\delta(G) \geq 2$.

Hierholzer's Algorithm for Euler Circuits

- 1. Choose a root vertex r and start with the trivial partial circuit (r)
- 2. Given a partial circuit $(x_0, e_1, x_1, ..., x_{t-1}, e_t, x_t = x_0)$ that traverses not all edges of G , remove these edges from G
- 3. Let *i* be the least integer for which x_i is incident with one of the remaining edges
- 4. Form a greedy partial circuit among the remaining edges of the form $(x_i = y_0, e'_1, y_1, ..., y_{s-1}, e'_s, y_s = x_i)$
- 5. Expand the original circuit by setting $(x_0, e_1, ..., e_i, x_i = y_0, e'_1, y_1, ..., y_{s-1}, e'_s, y_s = x_i, e_{i+1}, ..., e_t, x_t = x_0)$
- 6. Repeat step 2-5

Example

- 1. Start with the trivial circuit (1)
- 2. Greedy algorithm yields the partial circuit $(1,2,4,3,1)$
- 3. Remove these edges
- 4. The first vertex incident with remaining edges is 2
- 5. Greedy algorithms yields (2,5,8,2)
- 6. Expanding (1,2,5,8,2,4,3,1)
- 7. Remove these edges

71

Example (cont.)

- 6. Expanding (1,2,5,8,2,4,3,1)
- 7. Remove these edges
- 8. First vertex incident with remaining edges is 4
- 9. Greedy algorithm yields $(4,6,7,4,9,6,10,4)$ 10. Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1)
- 11. Remove these edges
- 12. First vertex incident with remaining edges is 7
- 13. Greedy algorithm yields $(7,9,11,7)$
- 14. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Eulerian circuit

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one • nontrivial component and its vertices all have even degree

Other properties

- Proposition (1.2.27, W) Every even graph decomposes into cycles
- The necessary and sufficient condition for a directed Eulerian circuit is that the graph is connected and that each vertex has the same 'indegree' as 'out-degree'

- TONCAS: The obvious necessary condition is also sufficient
- Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one • nontrivial component and its vertices all have even degree
- Proposition (1.3.28, W) The nonnegative integers $d_1, ..., d_n$ are the vertex degrees of some graph $\Leftrightarrow \sum_{i=1}^{n} d_i$ is even
- (Possibly with loops)
- Otherwise (2,0,0) is not realizable
- **1.3.63.** (!) Let d_1, \ldots, d_n be integers such that $d_1 \geq \cdots \geq d_n \geq 0$. Prove that there is • a loopless graph (multiple edges allowed) with degree sequence d_1, \ldots, d_n if and only if $\sum d_i$ is even and $d_1 \leq d_2 + \cdots + d_n$. (Hakimi [1962])

Hamiltonian path/circuits

- A path P is Hamiltonian if $V(P) = V(G)$
	- Any graph contains a Hamiltonian path is called traceable
- A cycle C is called Hamiltonian if it spans all vertices of G
	- A graph is called Hamiltonian if it contains a Hamiltonian circuit
- In the mid-19th century, Sir William Rowan Hamilton tried to popularize the exercise of finding such a closed path in the graph of the dodecahedron (正十二面体)

Degree parity is not a criterion

Theorem (1.2.26, W) A graph G is Eulerian \iff it has at most one nontrivial component and its vertices all have even degree

- Hamiltonian graphs
	- all even degrees C_{10}
	- all odd degrees K_{10}
	- a mixture G_1
- non-Hamiltonian graphs
	- all even G_2
	- all odd $K_{5.7}$
	- mixed $P_{\rm q}$

 G_2

Example

• The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

• Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete

P, NP, NPC, NP-hard

- P The general class of questions for which some algorithm can provide an answer in polynomial time
- NP (nondeterministic polynomial time) The class of questions for which an answer can be *verified* in polynomial time
- NP-Complete
	- 1. c is in NP
	- 2. Every problem in NP is reducible to c in polynomial time
- NP-hard
	- \leftarrow c is in NP
	- Every problem in NP is reducible to c in polynomial time

Large minimal degree implies Hamiltonian

• Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian

> Proposition (1.3.15, W) If $\delta(G) \geq \frac{n-1}{2}$, then G is connected (Ex16, S1.1.2, H) (1.3.16, W) If $\delta(G) \geq \frac{n-2}{2}$, then G need not be connected

- The bound is tight (Ex12b, S1.4.3, H) $G = K_{r,r+1}$ is not Hamiltonian Exercise The condition when $K_{r,s}$ is Hamiltonian
- The condition is not necessary
	- C_n is Hamiltonian but with small minimum (and even maximum) degree

Generalized version

• Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of order $n \geq 3$. If $deg(x) + deg(y) \geq n$ for all pairs of nonadjacent vertices x , y , then G is Hamiltonian

Theorem (1.22, H, Dirac) Let G be a graph of order $n \ge 3$. If $\delta(G) \ge n/2$, then G is Hamiltonian

Independence number & Hamiltonian

- A set of vertices in a graph is called independent if they are pairwise nonadjacent
- The independence number of a graph G , denoted as $\alpha(G)$, is the largest size of an independent set

• Example:
$$
\alpha(G_1) = 2, \alpha(G_2) = 3
$$

• Theorem (1.24, H) Let G be a connected graph of order $n \geq 3$. If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle

Independence number & Hamiltonian 2

Theorem $(1.24, H)$ Let G be a connected graph of order $n \geq 3$. If $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian

• The result is tight: $\kappa(G) \ge \alpha(G)-1$ is not enough

•
$$
K_{r,r+1}
$$
: $\kappa = r, \alpha = r + 1$

• Exercise (Ex4, S1.4.3, H) Peterson graph: $\kappa = 3$, $\alpha = 4$

FIGURE 1.63. The Petersen Graph.

Pattern-free & Hamiltonian

- G is H -free if G doesn't contain a copy of H as induced subgraph
- Theorem (1.25, H) If G is 2-connected and $\{K_{1,3}, K_1\}$ -free, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle

- The condition 2-connectivity is necessary
- (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Lecture 5: Matchings

Motivating example

Definitions

- A matching is a set of independent edges, in which no pair of edges shares a vertex
- The vertices incident to the edges of a matching M are M-saturated (饱和的); the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is $n!$
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n - 1)(2n - 3) \cdots 1 = (2n - 1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

• Every maximum matching is maximal, but not every maximal matching is a maximum matching

Symmetric difference of matchings

- The symmetric difference of M, M' is $M\Delta M' = (M M') \cup (M' M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

- Given a matching M , an M -alternating path is a path that alternates between edges in M and edges not in \boldsymbol{M}
- An M-alternating path whose endpoints are M unsaturated is an M -augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Hall's theorem (TONCAS)

• Theorem $(3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935)$ Let G be a bipartite graph with partition X, Y .

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular $(k > 0)$ bipartite graph has a perfect matching

General regular graph

- Corollary (2.1.5, D) Every regular graph of positive even degree has a 2-factor
	- A k -regular spanning subgraph is called a k -factor
	- A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian \Leftrightarrow it has at most one nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular $(k > 0)$ bipartite graph has a perfect matching

Application to SDR

• Given some family of sets X , a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X

$$
S_1 = \{2, 8\},
$$

\n
$$
S_2 = \{8\},
$$

\n
$$
S_3 = \{5, 7\},
$$

\n
$$
S_4 = \{2, 4, 8\},
$$

\n
$$
S_5 = \{2, 4\}.
$$

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

• Theorem(1.52, H) Let $S_1, S_2, ..., S_k$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in [k]$, the union of any t of these sets contains at least t elements

> Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X, Y . G contains a matching of $X \Leftrightarrow |N(S)| \geq |S|$ for all $S \subseteq X$

König Theorem Augmenting Path Algorithm

Vertex cover

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
	- Art museum is a graph with hallways are edges and corners are nodes
	- A security camera at the corner will guard the paintings on the hallways
	- The minimum set to place the cameras?

König-Egeváry Theorem (Min-max theorem)

• Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

> Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M -augmenting path

Augmenting path algorithm (3.2.1, W)

- **Input**: G is Bipartite with X , Y , a matching M in G $U = \{M$ -unsaturated vertices in X } Y
- \cdot **Idea**: Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- **Initialization**: $S = U, T = \emptyset$ and all vertices in S are unmarked
- **Iteration**:
	- If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching

X

- Otherwise, select an unmarked $x \in S$ to explore
	- Consider each $y \in N(x)$ such that $xy \notin M$
		- If y is unsaturated, terminate and report an M -augmenting path from U to y
		- Otherwise, $yw \in M$ for some w
			- include y in T (reached from x) and include w in S (reached from y)
	- After exploring all such edges incident to x , mark x and iterate.

Theoretical guarantee for Augmenting path algorithm

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted Bipartite Matching Hungarian Algorithm

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight $w(M)$
- Bipartite graph
	- W.l.o.g. Assume the graph is $K_{n,n}$ with $w_{i,j} \geq 0$ for all $i, j \in [n]$
	- Optimization:

max
$$
w(M_a) = \sum_{i,j} a_{i,j} w_{i,j}
$$

s.t. $a_{i,1} + \cdots + a_{i,n} = 1$ for any i
 $a_{1,j} + \cdots + a_{n,j} = 1$ for any j
 $a_{i,j} \in \{0,1\}$

- Integer programming
- General IP problems are NP-Complete

(Weighted) cover

- A (weighted) cover is a choice of labels $u_1, ..., u_n$ and $v_1, ..., v_n$ such that $u_i + v_j \geq w_{i,j}$ for all *i*, *j*
	- The cost $c(u, v)$ of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
	- The minimum weighted cover problem is that of finding a cover of minimum cost
- Optimization problem

$$
\min c(u, v) = \sum_{i} u_i + \sum_{j} v_j
$$

s.t. $u_i + v_j \ge w_{i,j}$ for any *i, j*

Duality

- Weak duality theorem
	- For each feasible solution a and (u, v)

$$
\sum_{i,j} a_{i,j} w_{i,j} \le \sum_i u_i + \sum_j v_j
$$

thus $\max \sum_{i,j} a_{i,j} w_{i,j} \le \min \sum_i u_i + \sum_j v_j$

Duality (cont.)

- Strong duality theorem
	- If one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight

$$
\max \sum_{i,j} a_{i,j} w_{i,j} = \min \sum_i u_i + \sum_j v_j
$$

• Lemma (3.2.7, W) For a perfect matching M and cover (u, v) in a weighted bipartite graph G, $c(u, v) \geq w(M)$. $c(u, v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u, v) are optimal.

Equality subgraph

- The equality subgraph $G_{u,v}$ for a cover (u,v) is the spanning subgraph of $K_{n,n}$ having the edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$
	- So if $c(u, v) = w(M)$ for some perfect matching M, then M is composed of edges in G_{11} ₁₂
	- And if $G_{u,v}$ contains a perfect matching M, then (u, v) and M (whose weights are $u_i + v_j$) are both optimal

Hungarian algorithm

- **Input**: Weighted $K_{n,n} = B(X, Y)$
- **Idea**: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_i$ j $W_{i,j}$, $v_j = 0$

Hungarian algorithm (cont.)

- **Iteration**: Find a maximum matching M in $G_{u,v}$
	- If M is a perfect matching, stop and report M as a maximum weight matching
	- Otherwise, let Q be a vertex cover of size $|M|$ in $G_{u,v}$

• Let
$$
R = X \cap Q
$$
, $T = Y \cap Q$
\n
$$
\epsilon = \min\{u_i + v_j - w_{i,j}: x_i \in X - R, y_j \in Y - T\}
$$

• Decrease u_i by ϵ for $x_i \in X - R$ and increase v_j by ϵ for $y_j \in T$

• Form the new equality subgraph and repeat

Example

Example 2: Excess matrix

 $\boldsymbol{2}$

3

3

 τ

 $\pmb{\tau}$

 $\pmb{\mathcal{T}}$

 $\overline{7}$

Optimal value is the same But the solution is not unique

Theoretical guarantee for Hungarian algorithm

• Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0,1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover