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Exam code

* Exam on Nov 14, 10 AM-noon at Dong Shang Yuan 205 (lecture
classroom)

* Finish the exam paper by yourself

* Allowed:
 Calculator, watch (not smart)

* Not allowed:
* Books, materials, cheat sheet, ...
* Phones, any smart device

* No entering after 10:30
* Early submission period: 10:50--11:50



Basics



Graphs

* Definition A graph G is a pair (V, E) Simple graph:
* V. set of vertices
* E:set of edges

We mainly focus on

No loops, no multi-edges

* e € E corresponds to a pair of endpoints x,y € V

edge ends
a X, 2
b Y, W
C X, 2
d 2, W
e 2, W
f T,y
g Z, W

Figure 1.1

(i) graph

|

(ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2



Graphs: All about adjacency

 Same graph or not

(a) (b) (c)
* Two graphs G; = (V,E,), G, = (V,, E,) are isomorphic if there is a
bijection f:1; = I, s.t.

e ={a, b} €E; & f(e):=1{f(a),f(b)} € E;



Example: Complete graphs

* There is an edge between every pair of vertices




Example: Regular graphs

* Every vertex has the same degree

JAN 0i0,0,0®
AA| ? oRelioRe

1| R 1>

> OO

1 &




Example: Bipartite graphs

* The vertex set can be partitioned into two sets X and Y such that
every edge in G has one end vertex in X and the otherinY

* Complete bipartite graphs




Example (1A, L): Peterson graph

* Show that the following two graphs are same/isomorphic

Figure 1.4



Example: Peterson graph (cont.)

* Show that the following two graphs are same/isomorphic

AN




Subgraphs

* A subgraph of a graph G is a graph H such that
V(H) € V(G),E(H) € E(G)
and the ends of an edge e € E(H) are the same asits ends in G
* His a spanning subgraph when V(H) =V (G)
* The subgraph of G induced by a subset S € V(G) is the subgraph whose
vertex set is S and whose edges are all the edges of G with both ends in §

HEG

Subgraph (in red) Induced Subgraph

11



Paths (B&4%)

* A path is a non-empty alternating sequence vye v €, ... €5 Uy
where vertices are all distinct
* Or it can be written as vyvy ... Vg in simple graphs

e P¥: path of length k (the number of edges)




Walk (Jif )

* A walk is a non-empty alternating sequence vye v €, ... €5 Uy
* The vertices not necessarily distinct
* The length = the number of edges

* Proposition (1.2.5, W) Every u-v walk contains a u-v path



Cycles (3)

* If P =xpX; ... X1 isa path and k = 3, then the graph C := P +
X1 _1Xg is called a cycle

* C¥: cycle of length k (the number of edges/vertices)

[ ]

n=4 n=5 n=6

* Proposition (1.2.15, W) Every closed odd walk contains an odd cycle



Neighbors and degree

* Two vertices a # b are called adjacent if they are joined by an edge

* N(x): set of all vertices adjacent to x
* neighbors of x
* Avertex is isolated vertex if it has no neighbors

* The number of edges incident with a vertex x is called the degree of x
* Aloop contributes 2 to the degree

* A graph is finite when both E(G) and V(G) are finite sets

graph with loop



Handshaking Theorem (Euler 1736)

* Theorem A finite graph G has an even number of vertices with odd

degree
C/ -

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

yA W

Figure 1.2
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Proof

* Theorem A finite graph G has an even number of vertices with

odd degree.

* Proof The degree of x is the number of times it appears
in the right column. Thus

D deg() = 2IE(G)

xeV(G)

edge

ends

a

Q %0 Q. O o

X,z
Y, w
X,z
2, W
2, W
z,Y
2, W

Figure 1.1




Degree

* Minimal degree of G: 6(G) = min{d(v):v € V}
* Maximal degree of G: A(G) = max{d(v)' v EV}

* Average degree of G: d(G) = Zvev d(v) = ZlEl

* All measure the density’ of a graph

- d(G) = 6(G)

18



Degree (global to local)

* Proposition (1.2.2, D) Every graph G with at least one edge has a
subgraph H with

1 1
5(H) > = d(H) = 5d(6)
H

* Example: |G| = 7,d(G) = —

(D (3)
e S(H) = 2,d(H) = % 9‘36
@\t X

16
7



Minimal degree guarantees long paths and
cycles

* Proposition (1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least 6 (G) + 1, provided 6 (G) = 2.




Distance and diameter

* The distance d;(x,y) in G of two vertices x, y is the length of a
shortest x~7y path

* if no such path exists, we set d(x,y) = oo

* The greatest distance between any two vertices in G is the diameter
of G
diam(G) = max d(x,y)
X, YyEV



Example -- Erdds number

* A well-known graph
 vertices: mathematicians of the world
e Two vertices are adjacent if and only if they have
published a joint paper
* The distance in this graph from some mathematician to the
vertex Paul Erdds is known as his or her Erdés number

22



Radius and diameter

* A vertex is central in G if its greatest distance from other vertex is
smallest, such greatest distance is the radius of G
rad(G) := minmaxd(x,y)

xXeV yev

* Proposition (1.4, H; Ex1.6, D) rad(G) < diam(G) < 2 rad(G)

3
L
® Central Point

Diameter = 4



Radius and maximum degree control graph
Size

* Proposition (1.3.3, D) A graph G with radius at most r and maximum
degree at most A> 3 has fewer than ﬁ (A—1)".

Figure 1: Star Graph




Lecture 2: Girth, Connectivity
and Bipartite Graphs



Girth

* The minimum length of a cycle in a graph G is the girth g(G) of G

* Example: The Peterson graph is the unique 5-cage
e cubic graph (every vertex has degree 3)
e girth=5

* smallest graph satisfies the above properties




Girth (cont.)

* A tree has girth oo

* Note that a tree can be colored with two different
colors

* = A graph with large girth has small chromatic
number?

e Unfortunately NO!

* Theorem (Erdd@s, 1959) For all k, [, there exists a
graph G with g(G) > land y(G) > k

27



Girth and diameter

* Proposition (1.3.2, D) Every graph G containing a cycle satisfies
g(G) < 2diam(G) + 1

* When the equality holds?



Girth and minimal degree lower bounds
graph size

1+6YI-5(6—1), ifg=2r+1isodd
230248 — 1), if g = 2r is even
* Exercise (Ex7, chl, D) Let G be agraph. If §(G) = 6 = 2and g(G) =
g, then |G| = ny(5, g9)
e Corollary (1.3.5, D) If §(G) = 3, then g(G) < 2 log, |G|

° n0(6' g) =



Triangle-free upper bounds # of edges

* Theorem (1.3.23, W, Mantel 1907) The maximum number of edges in
an n-vertex triangle-free simple graph is |n? /4|

* The bound is best possible
* There is a triangle-free graph with |[n? /4| edges: Kin/21m/21

* Extremal problems



Connected, connected component

e A graph G is connected if G # @ and any two of its vertices are linked
by a path

* A maximal connected subgraph of G is a (connected) component

1]

31



Quiz

* Problem (1B, L) Suppose G is a graph on 10 vertices that is not
connected. Prove that G has at most 36 edges. Can equality occur?

* More general (Ex9, S1.1.2, H) Let G be a graph of order n that is not
connected. What is the maximum size of G?



Connected vs. minimal degree

* Proposition (1.3.15, W) If §(G) = nT_l, then G is connected

e (Ex16,51.1.2, H; 1.3.16, W)

If 6(G) > n—z’ then G need not be connected
2

* Extremal problems

”n

e “best possible” “sharp”



-0
Add/delete an edge @ I:

* Components are pairwise disjoint; no two share a vertex

* Adding an edge decreases the number of components by O or 1
* = deleting an edge increases the number of components by O or 1
* Proposition (1.2.11, W)
Every graph with n vertices and k edges has at leastn — k
components

* An edge e is called a bridge if the graph ¢ — e has more components

* Proposition (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge < e lies on a cycle of G

34



Cut vertex and connectivity I—I>

* Anode v is a cut vertex if the graph G — v has more O\D
components

* A proper subset S of vertices is a vertex cut set if the
graph G — S is disconnected, or trivial (a graph of
order 0 or 1)

* The connectivity, k(G), is the minimum size of a cut
set of G

* The graph is k-connected for any k < k(G)

35



Connectivity properties

‘k(K")=n-1
* If G is disconnected, k(G) = 0

* = A graphis connected © k(G) > 1

* If G is connected, non-complete graph of order n, then
1<k(G)<n-2



Connectivity properties (cont.)

on (1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
* Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* kK(G) = 2 < (G is connected and has no cut vertices

* A vertex lies on a cycle # it is not a cut vertex

« = (Ex13, S1.1.2, H) Every vertex of a connected graph G lies on at least one
cycle # k(G) = 2

* (Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle

e (Ex12, S1.1.2, H) G has a cut vertex vs. G has a bridge



Connectivity and minimal degree

e (Ex15, S1.1.2, H)

* k(G) <6(G) <
* If §5(G) = n—2,thenk(G) = 6(G)




Edge-connectivity

* A proper subset FF C E is edge cut set if the graph G — F is
disconnected

* The edge-connectivity A(G) is the minimal size of edge cut set
* A(G) = 0if G is disconnected
(1.4.2, D) If G is non-trivial, then k(G) < A(G) < §(G)




_Large average (minimal) degree implies local
arge connectivity

* Theorem (1.4.3, D, Mader 1972) Every graph G with d(G) = 4k has a
(k + 1)-connected subgraph H such that d(H) > d(G) — 2k.




< - @
Bipartite graphs i j/@

* Theorem (1.2.18, W, Kénig 1936)
A graph is bipartite < it contains no odd cycle

n (1.2.15, W) Every closed odd walk contains an odd cycle



Complete graph is a union of bipartite graphs

* The union of graphs G4, ..., G, written G; U --- U Gy, is the graph with
vertex set U¥_, V(G;) and edge set U, E(G;)

* Consider an air traffic system with k airlines
* Each pair of cities has direct service from at least one airline

* No airline can schedule a cycle through an odd number of cities \>4/ |
VA

* Then, what is the maximum number of cities in the system?

* Theorem (1.2.23, W) The complete graph K,, can be expressed as the
union of k bipartite graphs & n < 2%



Bipartite subgraph is large

 Theorem (1.3.19, W) Every loopless graph G has a bipartite subgraph
with at least |E|/2 edges



Lecture 3: Trees



Trees

* A treeis a connected graph T with no cycles

Root Node
Savings = Low, Med, High?

Savings = High

Yes No Yes No

Savings = Low

Savings = Medl

Good Credit Risk

Bad Risk Good Risk Bad Risk Good Risk




Properties

* =>(Ex 3, S1.3.1, H) A'tree of order n = 2 is a bipartite graph

(1.2.14, W)
An edge e is a bridge < e lies on no cycle of G
° Reca ” that * Or equivalently, an edge e is not a bridge <& e lies on a cycle of G

* = Every edge in a tree is a bridge

* Tisatree & T is minimally connected, i.e. T is connected butT — e
is disconnected for everyedgee € T



Equivalent definitions (Theorem 1.5.1, D)

 Tisatree of ordern
& Any two vertices of T are linked by a unique pathin T
< T is minimally connected

* i.e. T is connected but T — e is disconnected for everyedgee € T

< T is maximally acyclic

* i.e. T contains no cycle but T + xy does for any non-adjacent vertices x,y €
T

< (Theorem 1.10, 1.12, H) T is connected with n — 1 edges
< (Theorem 1.13, H) T is acyclic with n — 1 edges



Leaves of tree

* A vertex of degree 1 in a tree is called a leaf

* Theorem (1.14, H; Ex9, S1.3.2, H) Let T be a tree of order n = 2. Then
T has at least two leaves

* (Ex3,S1.3.2, H) Let T be a tree with max degree A. Then T has at least
A leaves

* (Ex10, S1.3.2, H) Let T be a tree of order n = 2. Then the number of
leaves is
2+ ) (@d®) -2)

v:d(v)=3
* (Ex8, S1.3.2, H) Every nonleaf in a tree is a cut vertex

* Every leaf node is not a cut vertex



The center of a tree is a vertex or ‘an edge’

* Theorem (1.15, H) In any tree, the center is either a single vertex or a
pair of adjacent vertices



Any tree can be embedded in a ‘dense’ graph

* Theorem (1.16, H) Let T be a tree of order k + 1 with k edges. Let G
be a graph with 6(G) = k. Then G contains T as a subgraph



Spanning tree

e Given a graph G and a subgraph T, T is a spanning tree of G if T is a
tree that contains every vertex of ¢

* Example: A telecommunications company tries to lay cable in a new
neighbourhood

* Proposition (2.1.5¢, W) Every connected graph contains a spanning
tree



Minimal spanning tree - Kruskal’s Algorithm

* Given: A connected, weighted graph G
1. Find an edge of minimum weight and mark it.

2. Among all of the unmarked edges that do not form a cycle with any
of the marked edges, choose an edge of minimum weight and mark
it

3. If the set of marked edges forms a spanning tree of G, then stop. If
not, repeat step 2



Example

FIGURE 1.43. The stages of Kruskal’s algorithm.
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Theoretical guarantee of Kruskal’s algorithm

* Theorem (1.17, H) Kruskal’s algorithm produces a spanning tree of
minimum total weight



Cayley’s tree formula

* Theorem (1.18, H; 2.2.3, W). There
are n™2 distinct labeled trees of

ordern H|/\3AA
£d €3 €3

&

63 €3 €3 €3
£d €3 €3 3
Ao A Ao oA

LI
Z NN
XXX
NZAN

FIGURE 1.46. Labeled trees on four vertices



Example

o

~
Il
|
IS

Evolving Sequence

4

4,3

4,3,1

4,3,1,3

4,3,1,3,1

FIGURE 1.47. Creating a Priifer sequence.

c=06,-4,3,1,3,1

§=5,={1,2,3,4,5,6,7}
6,=3,1,3,1
5,=1{1,3,4,56,7)
c,=1,3,1

S,={1,3,5,6,7}

c,=3,1
§,=1{1,3,6,7}

o,=1

§,={1,3,7}

o is empty

S.={1,7}

FIGURE 1.48. Building a labeled tree.

Vi

Vi

Vg Vi

L

Ve V3

Vs Va
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of trees with fixed degree sequence

* Corollary (2.2.4, W) Given positive integers d, ..., d,, summing to
(n-2)!

[1(d;—1)!
vertex i has degree d; for each i

2n — 2, there are exactly trees with vertex set [n] such that

* Example (2.2.5, W) Consider trees with vertices [7] that have degrees
(3,1,2,1,3,1,1)

1 5 1

- TT1 T

1 3
-

]




Matrix tree theorem - cofactor

* For an nXn matrix 4, the i, j cofactor of
A is defined to be

(—1)i+j det(MU)
where M;; represents the (n — 1)xX(n —
1) matrix formed by deleting row i and
column j from A

3 x 3 generic matrix |edit]

Consider a 3x3 matrix

ayy QG12  G13
A= a1 G Q23 |-
azy Q32 33

Its cofactor matrix is

( 4|02 as| _len
agy a3l a3y
aijp a3 a1

C — — _|,
azy 33 a3y
a2 a3 a1l

\t 1
@y a3 oy

Q323
ass

ays
@33

ais
as3

a
a3l

ay
31

, | @11

Q3

a2
asz

aiz
a3z

a2
a2
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Matrix tree theorem

* Theorem (1.19, H; 2.2.12, W; Kirchhoff) If G is a connected labeled
graph with adjacency matrix A and degree matrix D, then the number
of unique spanning trees of G is equal to the value of any cofactor of
the matrix D — A

* |f the row sums and column sums of a matrix are all 0, then the
cofactors all have the same value

* Exercise Read the proof

* Exercise (Ex7, S1.3.4, H) Use the matrix tree theorem to prove
Cayley’s theorem



The degree matrix D and adjacency matrix A are

Example " E 2 0 0 0 "0 0

0 2 0 0 . 100
D= 00 3 0| A= 1 1
Vs vy i 0 0 0 ‘3_ _1 1

ind so ) )

‘ 5 0 -1 -1

| | Eg o2 -1
M N D-A=1 1 1 3 _4

1 -1 -1 3

- -

The (1,1) cofactorof D — A 1s

2 -1 -1
det | —1 3 —1 | =8.
-1 -1 3

FIGURE 1.49. A labeled graph and its spanning trees. Score one for Kirchhoff!

* Exercise (Ex6, $1.3.4, H) Let e be an edge of K,,. Use Cayley’s Theorem
to prove that K,, — e has (n — 2)n™3 spanning trees

60
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Wiener index

* In a communication network, large diameter may be acceptable if
most pairs can communicate via short paths. This leads us to study
the average distance instead of the maximum

* Wiener index D(G) = Xy, yey () 6 (W, V)

(2.1.14, W) Among trees with n vertices, the Wiener index
D (T) is minimized by stars and maximized by paths, both uniquely

* Over all connected n-vertex graphs, D(G) is minimized by K,, and
maximized (2.1.16, W) by paths
* (Lemma 2.1.15, W) If H is a subgraph of G, then d;(u,v) < dy(u, v)



Prefix coding

* A binary tree is a rooted plane tree where each vertex has at most
two children

* Given large computer files and limited storage, we want to encode
characters as binary lists to minimize (expected) total length

* Prefix-free coding: no code word is an initial portion of another

* Example: 11001111011




Huffman’s Algorithm (2.3.13, W)

* Input: Weights (frequencies or probabilities) p4, ...,
e Output: Prefix-free code (equivalently, a binary tree)

* |dea: Infrequent items should have longer codes; put infrequent items
deeper by combining them into parent nodes.

* Recursion: replace the two least likely items with probabilities p, p’
with a single item of weight p + p’



Example (2.3.14, W)

100

O | L

00000

00001

01

11

0001

001

S| || |Q|O

D W IN[OIN]|FR | ]U

101

The average length is

5X3+5+5+7X24-

33



Huffman coding is optimal

* Theorem (2.3.15, W) Given a probability distribution {p;} on n items,
Huffman’s Algorithm produces the prefix-free code with minimum
expected length



Huffman coding and entropy

* The entropy of a discrete probability distribution {p;} is that

H(p) = — z p; log, p;

l
* Exercise (Ex2.3.31, W) H(p) < average length of Huffman coding <
H(p) +1
* Exercise (Ex2.3.30, W) When each p; is a power of 12, average length
f Huff ding is H
(@) utrtfman Cco |ng IS (p) Codewords average length (1) <§> @) (i> L 3) <é> +3) <£>

s, 5 0
1.0 1.75 bits/sym
s, .25 0 10
5 1 H
1

o
I I

lh2)+ l()g_, 4+ l()hz‘%+ 105_,\

3
_+_,

|

110

+
b | =
i

-

!_‘l\a\'—“[\'ili—‘
0| e

=1

) |

111

w 92
w
2 B
(&) (&)
_\/o
N
(&)
1



Lecture 4: Circults



Eulerian circuit

* A closed walk through a graph using every edge once is called an
Eulerian circuit

* A graph that has such a walk is called an Eulerian graph

* Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* (possibly with multiple edges)

* Proof “=" That G must be connected is obvious.
Since the path enters a vertex through some edge and
leaves by another edge, it is clear that all degrees must be even



Key lemma

e Lemma (1.2.25, W) If every vertex of a graph G has degree at least 2,

then G contains a cycle.

on (1.3.1, D) Every graph G contains a path of length 6 (G)
and a cycle of length at least § (G) + 1, provided 6 (G) = 2.

69



Hierholzer’s Algorithm for Euler Circuits

1. Choose a root vertex r and start with the trivial partial circuit ()

2. Given a partial circuit (xg, €1, X1, ..., Xt_1, €, X = X) that traverses not
all edges of G, remove these edges from G

3. Leti be the least integer for which x; is incident with one of the
remaining edges

4. Form a greedy partial circuit among the remaining edges of the form
(Xi = Yo, €1, Y1, - Vs—1, €5, Vs = X;)

5. Expand the original circuit by setting
(xO' €1, €1 X = Vo, 8{, Vi Ys—1 8;, Vs = Xiy€ig1y ey €6, Xt = xO)

6. Repeat step 2-5



10

Example

1. Start with the trivial circuit (1)

Greedy algorithm yields the partial circuit
(1,2,4,3,1)

N

Remove these edges

The first vertex incident with remaining edges is 2
Greedy algorithms yields (2,5,8,2)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

N o U &AW

10

11

11



Example (cont.)

. Remove these edges ' o o)
. First vertex incident with remaining edges is 7 5O °o b”
. Greedy algorithm yields (7,9,11,7) O

. Expanding (1,2,5,8,2,4,6,7,9,11,7,4,9,6,10,4,3,1)

Expanding (1,2,5,8,2,4,3,1)

Remove these edges

First vertex incident with remaining edges is 4

Greedy algorithm yields (4,6,7,4,9,6,10,4) o 10
.Expanding (1,2,5,8,2,4,6,7,4,9,6,10,4,3,1) 30 o’



Eulerian circuit

Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Konigsberg
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Other properties

* Proposition (1.2.27, W) Every even graph decomposes into cycles

* The necessary and sufficient condition for a directed Eulerian circuit is
that the graph is connected and that each vertex has the same ‘in-
degree’ as ‘out-degree’



TONCAS

* TONCAS: The obvious necessary condition is also sufficient

[heorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* Proposition (1.3.28, W) The nonnegative integers d;, ..., d,, are the
vertex degrees of some graph & )i, d; is even

* (Possibly with loops)

* Otherwise (2,0,0) is not realizable

1.3.63. (!) Let d,..., d, be integers such thatd; > .-+ > d, > 0. Prove that there is
a loopless graph (multiple edges allowed) with degree sequence d,, ..., d, if and only if
> diisevenandd) < dz + - - - +d,. (Hakimi [1962])

75



Hamiltonian path/circuits

* A path P is Hamiltonian if V(P) = V(G)

* Any graph contains a Hamiltonian path is called traceable

* A cycle C is called Hamiltonian if it spans all vertices of G
* A graph is called Hamiltonian if it contains a Hamiltonian circuit

* In the mid-19th century, Sir William Rowan Hamilton tried to
popularize the exercise of finding such a closed path in the graph of

—a

—_—-
N

—_— a
L_a

the dodecahedron (1

&

Figure 1.9

——

H

1)
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Degree parity Is not a criterion

(1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

* Hamiltonian graphs
* all even degrees (4
* all odd degrees K
* a mixture G4

* non-Hamiltonian graphs G,
* all even G,
* all odd K5
* mixed Pq
G,

77



Example

* The Petersen graph has a Hamiltonian path but no Hamiltonian cycle

* Determining whether such paths and cycles exist in graphs is
the Hamiltonian path problem, which is NP-complete



P, NP, NPC, NP-hard

P The general class of questions for which some
algorithm can provide an answer in polynomial
time

* NP (nondeterministic polynomial time) The class
of questions for which an answer can be verified in
polynomial time

* NP-Complete

1. cisin NP
2. Every problem in NP is reducible to c in polynomial

time
* NP-hard
(o D
* Every problem in NP is reducible to c in polynomial time

NP-Hard

NP-Complete

P # NP

NP-Hard

P=NP

\ = NP-Complete




Large minimal degree implies Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern = 3. 1f §(G) = n/2,
then G is Hamiltonian
(1.3.15, W) If 6 (G) = nT_l, then G is connected

(Ex16, S1.1.2, H) (1.3.16, W) |
If6(G) = nz;z’ then G need not be connected

 The bound is tight
(Ex12b, S1.4.3, H) G = K, ;41 is not Hamiltonian
Exercise The condition when K. ¢ is Hamiltonian

* The condition is not necessary
* (, is Hamiltonian but with small minimum (and even maximum) degree



Generalized version

* Exercise (Theorem 1.23, H, Ore; Ex3, S1.4.3, H) Let G be a graph of
order n = 3. If deg(x) + deg(y) = n for all pairs of nonadjacent
vertices x,y, then G is Hamiltonian

(1.22, H, Dirac) Let G be a graph of ordern > 3. If §(G) = n/2
then G is Hamlltonlan




Independence number & Hamiltonian

* A set of vertices in a graph is called independent if o /

they are pairwise nonadjacent f :

* The independence number of a graph G, denoted as “ : :
a(G), is the largest size of an independent set

e Example: a(G,) = 2,a(G,) = 3

* Theorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

(Ex14, S1.1.2, H) k(G) = 2 implies G has at least one cycle




Independence number & Hamiltonian 2

Theorem (1.24, H) Let G be a connected graph of
ordern = 3. If k(G) = a(G), then G is Hamiltonian

* The result is tight: k(G) = a(G)—1 is not enough
*Kipyirk=r,a=r+1
* Exercise (Ex4, S1.4.3, H) Peterson graph: k = 3,a = 4

FIGURE 1.63. The Petersen Graph.
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Pattern-free & Hamiltonian .4\ ﬂ

* G is H-free if G doesn’t contain a copy of H as induced subgraph

* Theorem (1.25, H) If G is 2-connected and {K1,3,Z1}-free, then G is
Hamiltonian

(Ex14, 51.1.2, H) k(G) = 2 implies G has at least one cycle

* The condition 2-connectivity is necessary
* (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected



Lecture 5: Matchings



Motivating example

Candidates

Jobs Q

Candidates

Jobs

86



Definitions

A matching is a set of independent edges, in which no pair of edges
shares a vertex

* The vertices incident to the edges of a matching M are M-saturated
(T AT H]); the others are M-unsaturated

* A perfect matching in a graph is a matching that saturates every
vertex

* Example (3.1.2, W) The number of perfect matchings in K,, , is n!

* Example (3.1.3, W) The number of perfect matchings in K, is



Maximal/maximum matchings # K/ 8¢ K

* A maximal matching in a graph is a matching that cannot be enlarged
by adding an edge

* A maximum matching is a matching of maximum size among all
matchings in the graph

* Example: P3, P N N
G 37

* Every maximum matching is maximal, but not every maximal
matching is a maximum matching



Symmetric difference of matchings

@

* The symmetric difference of M,M"is MAM' = (M — M") U (M’ — M)
* Lemma (3.1.9, W) Every component of the symmetric difference of

two matchings is a path or an even cycle

(‘h—-\ Oe—()
>} i ‘f, /J i
()—',/ ‘54) O

o~
—r

0O

18]
0
@)

O




Maximum matching and augmenting path

A2 A3 A4 A5
* Given a matching M, an M-alternating path is a path N
that alternates between edges in M and edges not in
M 1 | \
* An M-alternating path whose endpoints are M- - s B B G

unsaturated is an M-augmenting path
(3.1.10, W; 1.50, H; Berge 1957) A matching

M in a graph G is a maximum matching in G © G has ™ | N
no M-augmenting path P
Lemma (3.1.9, W) Every component of the symmetric difference of \ p % x

two matchings is a path or an even cycle il 8
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Hall’'s theorem (TONCAS)

* Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © |[N(S)| = [S| forall S € X

(3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G & G has |
no M-augmenting path

* Exercise. Read the other two proofs in Diestel.

e Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching




General regular graph

e Corollary (2.1.5, D) Every regular graph of positive even degree has a
2-factor
* A k-regular spanning subgraph is called a k-factor
* A perfect matching is a 1-factor

Theorem (1.2.26, W) A graph G is Eulerian < it has at most one
nontrivial component and its vertices all have even degree

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph
has a perfect matching
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Application to SDR

S; = {2,8)

* Given some family of sets X, a system of S, = {81,
distinct representatives for the sets in X S3 = {5,7},
is a ‘representative’ collection of distinct S1=12,4,8;

Sy = {2,4}.

elements from the sets of X
The family X7 = {57,52,53,54} does have an SDR. namely {2,8,7,4}. The
family Xo = {57.52,.54, 55} does not have an SDR.

* Theorem(1.52, H) Let 54, S,, ..., S;, be a collection of finite, nonempty
sets. This collection has SDR < for every t € |k], the union of any t of
these sets contains at least t elements

(3.1.11, W: 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite
graph with partition X, Y.
G contains a matching of X © [N(S)| = |S| forallS € X




KOnig Theorem
Augmenting Path Algorithm



Vertex cover

* Aset U € V is a (vertex) cover of E if every edge in G is incident with
a vertexin U

* Example:
* Art museum is a graph with hallways are edges and corners are nodes
e A security camera at the corner will guard the paintings on the hallways
* The minimum set to place the cameras?



Konig-Egevary Theorem (Min-max theorem)

(3.1.16, W; 1.53, H; 2.1.1, D; Konig 1931, Egevary 1931)
Let G be a bipartite graph. The maximum size of a matching in G is
equal to the minimum size of a vertex cover of its edges

"heorem (3.1.10, W; 1.50, H; Berge 1957) A matching
M in a graph G is a maximum matching in G © G has
no M-augmenting path
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Augmenting path algorithm (3.2&1, SW)

X
* Input: G is Bipartite with X,Y, a matching M in G
U = {M-unsaturated vertices in X } y

* Idea: Explore M-alternating paths from U
letting S € X and T € Y be the sets of vertices reached

e Initialization: S = U, T = @ and all vertices in S are unmarked

* Iteration:

* If S has no unmarked vertex, stop and report T U (X — S) as a minimum cover and M
as a maximum matching
* Otherwise, select an unmarked x € S to explore
* Consider eachy € N(x) such that xy ¢ M
* |If y is unsaturated, terminate and report an M-augmenting path from U to y
* Otherwise, yw € M for some w
* include y in T (reached from x) and include w in S (reached from y)

» After exploring all such edges incident to x, mark x and iterate.



A1

B1

Red: A random matching

A2

B2

A3

B3

A4

B4

A5

BS
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Theoretical guarantee for Augmenting path
algorithm

* Theorem (3.2.2, W) Repeatedly applying the Augmenting Path
Algorithm to a bipartite graph produces a matching and a vertex
cover of equal size



Weighted Bipartite Matching
Hungarian Algorithm



Weighted bipartite matching

* The maximum weighted matching problem is to seek a perfect matching M
to maximize the total weight w(M)

 Bipartite graph
* W.l.o.g. Assume the graph is K, ,, withw; ; = 0 forall i,j € [n]
* Optimization:

score(H) = 1.6

01(1)

max w(M,)= z a; jwi

s.t. a;j;+- +a]ln— 1 forany i
ay; + - +a,]—1forany]
a; ; €{0,1}

* Integer programming
* General IP problems are NP-Complete
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(Weighted) cover

* A (weighted) cover is a choice of labels u4, ..., u,, and vy, ..., v,, such
thatu; + v; = w; ; forall i,
* The cost c¢(u, v) of a cover (u, v) is X u; + 2 v;

* The minimum weighted cover problem is that of finding a cover of minimum
cost

* Optimization problem

min c(u,v) = Zui + Z v;
l J

s.t. u;+v; =w;;foranyli,j



Duality

(IP)

max Zai,jwi,j
Lj
s.t.a;; +-++a;, =1foranyi
a;; + -+ ay; =1foranyj

ai,j € {0,1}

>

(Linear programming)

max zai,jwi’j
Lj
s.t.a;q +-+a;, =1foranyi
a;;+ -+ a,;=1foranyj

ai,]- >0

(Dual)

4mmm—) ™MD Zui+2vj
j

i
s.t. u; + v; =2 w;; forany i, j

* Weak duality theorem
* For each feasible solution a and (u, v)

l,J

J

i

thus max }}; ;a; jw; j < min ), u; + ;v
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Duality (cont.)

e Strong duality theorem

* If one of the two problems has an optimal solution, so does the other one and
that the bounds given by the weak duality theorem are tight

max ) a; iw;j =min ) u; + V;
g =min Y Y
* Lemma (3.2.7, W) For a perfect matching M and cover (u,v) in a
weighted bipartite graph G, c(u,v) = w(M).
c(u,v) =w(M) & M consists of edges x;y; such thatu; + v; = w; ;
In this case, M and (u, v) are optimal.



Equality subgraph

* The equality subgraph G, ,, for a cover (u, v) is the spanning subgraph
of K, , having the edges x;y; such thatu; + v; = w; ;
* Soif c(u,v) = w(M) for some perfect matching M, then M is composed of
edges in Gy, ,,

* And if Gy, ;, contains a perfect matching M, then (u, v) and M (whose weights
are u; + vj) are both optimal



Hungarian algorithm

* Input: Weighted K,, , = B(X,Y)

* Idea: Iteratively adjusting the cover (u, v) until the equality subgraph
G, , has a perfect matching

* Initialization: Let (u, v) be a cover, such as u; = maxw; ;, v; =0
J

(Dual)

min :E:ui4—zgzui
J

i
s.t. u; +v; =w;;foranyi,j




Hungarian algorithm (cont.)

* Iteration: Find a maximum matching M in G, ,,
* If M is a perfect matching, stop and report M as a maximum weight matching

* Otherwise, let Q be a vertex cover of size |[M| in Gy,

c LetR=XNQ,T=YNQ
€ = min{ui +Uj — W; X EX—R,yj € Y—T}

* Decrease u; by € for x; € X — R and increase vj by e fory; € T
* Form the new equality subgraph and repeat

U S R

X
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Example 2: Excess matrix

0 00 0O

— N
N = Ol AN

<+ OIN N O
oI H O M R
0 0 AN

ANANOMm<H
N— o

WO = 00 O o

‘—¢

M O P O

A= M
O M OW
O M O
< w0 AN <

0 0 2 21

0 0110

Optimal value is the same
But the solution is not unique

~ —~
ANO Ol v~

O MmO
OlHF O O M
Mmw ¢ OIo

O Ol = A
{

< wr-< O

1

T
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Theoretical guarantee for Hungarian
algorithm

* Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum
weight matching and a minimum cost cover



Example 3

L R

O 321/
%3/.
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Back to (unweighted) bipartite graph

* The weights are binary 0,1

* Hungarian algorithm always maintain integer labels in the weighted
cover, thus the solution will always be 0,1

* The vertices receiving label 1 must cover the weight on the edges,
thus cover all edges

* So the solution is a minimum vertex cover



